首页> 外文OA文献 >Hamiltonian for a particle in a magnetic field on a curved surface in orthogonal curvilinear coordinates
【2h】

Hamiltonian for a particle in a magnetic field on a curved surface in orthogonal curvilinear coordinates

机译:哈密​​顿量对于曲面上的磁场中的粒子   正交曲线坐标

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Schr\"odinger Hamiltonian of a spin zero particle as well as the PauliHamiltonian with spin-orbit coupling included of a spin one-half particle inelectromagnetic fields that are confined to a curved surface embedded in athree-dimensional space spanned by a general Orthogonal Curvilinear Coordinate(OCC) are constructed. A new approach, based on the physical argument that uponsqueezing the particle to the surface by a potential, then it is the physicalgauge-covariant kinematical momentum operator (velocity operator) transverse tothe surface that should be dropped from the Hamiltonian(s). In both cases,theresulting Hermitian gauge-invariant Hamiltonian on the surface is free from anyreference to the component of the vector potential transverse to the surface,and the approach is completely gauge-independent. In particular, for the PauliHamiltonian these results are obtained exactly without any further assumptionsor approximations. Explicit covariant plug-and-play formulae for theSchr\"odinger Hamiltonians on the surfaces of a cylinder, a sphere and a torusare derived.
机译:自旋零粒子的薛定od哈密顿量以及具有自旋轨道耦合的泡利哈密顿量包括自旋二分之一粒子的电磁场,该电磁场被限制在嵌入一般正交曲线所跨越的三维空间中的曲面中构造了一个坐标(OCC),这是一种新的方法,基于一种物理论点,即通过将势能将粒子挤压到表面上,然后应将横向于表面的物理规范-协变运动学动量算子(速度算子)放下。哈密​​顿量在这两种情况下,在表面上进行Hermitian不变规哈密顿量的计算都没有参考横向于表面的矢量势分量,并且该方法完全独立于量规,特别是对于PauliHamiltonian精确地获得了结果,没有任何进一步的假设或近似。Schr“的显式协变即插即用公式在圆柱体,球体和圆环表面上的odinger哈密顿量。

著录项

  • 作者

    Shikakhwa, M. S.; Chair, N.;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号